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NOTE: Attempt Two questions from section-A and Three questions from section-B. All questions carry equal 
              marks. Mobile phones and other electronic gadgets are not allowed in the examination hall.

Section-A

Q1.
(a) Let a, b with
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, Then there exits unique integers q, r such that
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(b) Find (275, 105) and express it as a linear combination of 275 and 105.
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Q2.
(a) Find 
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, when n=2480, 3918 and 8013.
            (b)  An even integer is perfect if and only if it is of the form 
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 where 
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a prime is.
Q3.     
(a)  Prove that the Congruence relation is an equivalence relation in Z.

(b) Find the remainder when 
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is divisible by 8.          

Section-B
Q4.
(a) Define the following terms. (i) Group (ii) Groupoid (iii) Semi- group .                              


(b) Show that 
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 is a group under the binary operation multiplication.                                                              

Q5.
(a) Let 
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be an elements of a group G. Then 
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 is its own inverse if and only 
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is of order 2.
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            (b) Let Hand K be two subgroups of a group G. Then 
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is also subgroup of G. 

Q6.      (a)  Prove that every abelian group of prime order is cyclic.                                     

            (b) Let G be a finite group and H be its subgroup. Then order of H divides the order of G. 

Q7.       (a) Let G be a finite cyclic group, then every subgroup H of the group G is also cyclic. 

             (b) Let H and K be two subgroup of a group G, whose orders are relatively prime then
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 Q8.     (a) Prove that every cyclic permutation on a set
[image: image17.wmf]{

}

n

a

a

a

X

......,

,

,

2

1

=

is a product of transpositions.                                

            (b) If  X= 
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 and p= 
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 , q =
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 ,then find p
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